École d'été sur la conjecture de Birch et Swinnerton-Dyer
 

PARIS, 4 - 12 juillet 2002
 

PROGRAMME / PROGRAM



 

  • B. Edixhoven

              Modular parametrisations


    2 lectures

    The first two lectures will be devoted to modular curves and parametrizations of elliptic curves over the rationals by modular curves. Apart from the basics, some things will be said about reduction mod p and the image of the supersingular points, Manin constants, and Stevens's conjecture on the relation between strong parametrizations and modular height.

              Non-triviality of Heegner points (after Cornut)

    2 lectures

    The remaining two lectures will be used to explain Cornut's proof of non-triviality of Heegner points in anti-cyclotomic towers, using Moonen's work on the André-Oort conjecture.

    References :

    Chapters II (Silverman) and III (Rohrlich) of Modular forms and Fermat's Last Theorem, Gary Cornell and Glenn Stevens (editors), Springer-Verlag, 1997.

    Edixhoven's home page

    Cornut's home page

  • J. Oesterlé     La conjecture de Birch et Swinnerton-Dyer

    4 exposés

    Un premier exposé sera dévolu à un rappel des propriétés arithmétiques des variétés abéliennes définies sur les corps finis, locaux et globaux.
    Nous considérerons ensuite une variété abélienne définie sur un corps global, définirons sa fonction L et son groupe de Tate-Shafarevich et formulerons les conjectures de Birch et Swinnerton-Dyer : prolongement holomorphe de la fonction L, ordre d'annulation et coefficient dominant en s=1, finitude du groupe de Tate-Shafarevich. Nous examinerons leur compatibilité aux isogénies, à la restriction de Weil et leur lien avec les mesures de Tamagawa.
    Dans un dernier exposé, nous ferons le point sur l'état actuel des connaissances en ce qui concerne ces conjectures.

    Bibliographie :

    1. Pour une introduction à la théorie des variétés abéliennes : Arithmetic Geometry, édité par G. Cornell et J. H. Silverman, Springer-Verlag, 1986. (surtout les chapitres IV à VIII).
    2. Pour la formulation des conjectures de Birch and Swinnerton-Dyer : J. Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog (1966), Séminaire Bourbaki, Vol. 9, Exp. 306, 415-440, S.M.F, 1995.

  • P. Colmez     Fonctions L  p-adiques de courbes elliptiques

    Le but de l'exposé est d'énoncer la conjecture de Mazur-Tate-Teitelbaum, analogue p-adique de la conjecture de Birch et Swinnerton-Dyer. On passera donc rapidement en revue les ingredients utilisés : distributions sur Z_p, symboles modulaires, hauteurs p-adiques ...

  • H. Darmon     Periods of modular forms and the arithmetic of elliptic curves

    4 lectures

    The Birch and Swinnerton-Dyer conjecture relates the arithmetic of an elliptic curve to the behaviour of its associated L-series. When the elliptic curve is modular, this L-series is related to periods of a corresponding modular form. The Birch and Swinnerton-Dyer conjecture can then be recast in terms of such periods. Viewed in this way, it becomes part of a more general and flexible framework in which a variety of new phenomena can be discovered and studied. Each of my lectures will be devoted to exploring a different aspect of this simple unifying theme. Much of what I will present is the fruit of a collaboration with Massimo Bertolini.

    1. Overview
    2. p-adic integration and p-adic L-functions
    3. Stark-Heegner points attached to real quadratic fields
    4. The Mazur-Tate circle pairing

    References :

    Lectures 1 and 2 :

    The notes of my NSF-CBMS lecture series which are gradually being posted at http://www.math.mcgill.ca/darmon/courses/cbms/cbms.html

    Lecture 3 :

    Henri Darmon : Integration on Hp x H and arithmetic applications Annals of Mathematics 154 (2001) 589-639.
    Henri Darmon and Peter Green : Elliptic curves and class fields of real quadratic fields : algorithms and evidence, Experimental Mathematics, 11:1, 2002, 37-55.
    (Both these articles can be dowloaded from http://www.math.mcgill.ca/darmon/pub/pub.html)

    Lecture 4 :

    Barry Mazur and John Tate : Canonical height pairings via biextensions, Arithmetic and geometry, Vol. I, 195--237, Progr. Math., 35, Birkhauser Boston, Boston, MA, 1983.

  • B. Mazur     The Mechanics of Kolyvagin systems

    2 lectures

    The technique of Kolyvagin used to control the size of arithmetic Selmer groups has, as input, a certain system of cohomological classes (or rational points, or algebraic cycles, or elements in algebraic K-theory, depending upon the setting) over abelian extensions of the base field. Such systems have been called "Euler Systems" by Kolyvagin. As an intermediary step in Kolyvagin's method, a given Euler System is used to construct a specific collection of cohomology classes over the base field. It is this collection of cohomology classes over the base field that directly provide sufficiently many "local linear relations" satisfied by elements in the Selmer group so as to obtain good upper bounds for the size of the Selmer group. Such "collections of cohomology classes over the base field" enjoy (somewhat surprisingly) very rigid inter-relations. Karl Rubin and I have a manuscript in which we study this type of structure ; we call collections of cohomology classes satisfying these relations "Kolyvagin Systems". These Kolyvagin Systems turn out to have especially nice, and interesting, properties. For one thing, they seem more congenial to Galois deformations than are Euler systems, and they can be constructed in instances where we have no construction, yet, of a corresponding Euler system. It is helpful to view the generator of the module of Kolyvagin Systems, when there is only one generator, as something of a p-adic L-function (with values in cohomology groups) governing the arithmetic of the situtation. The aim of these two lectures is to elucidate this structure and its basic arithmetic applications.

    Bibliography :

    1. Chapter 1 of Karl Rubin's Euler Systems Annals of Math Studies, Princeton Univ. Press, 2000.
    2. Chapters 2 and 3 of the above.
    3. The still-unfinished manuscript Kolyvagin Systems that Karl Rubin and I are working on, and versions of this are on his web-page and on mine (http://abel.math.harvard.edu/~mazur/projects.html).

  • J. Nekovár     Skew-symmetric pairings on Selmer groups and their applications

    4 lectures

    The course will cover the following topics :

    (1) The proof of the Parity conjecture for Selmer groups of elliptic curves over Q (in the case of ordinary reduction).
    (2) General duality theory for Selmer groups in Iwasawa theory (in the case of (quasi)-ordinary reduction).
    (3) A generalization of (1) to modular forms of higher weight (if time permits).
    Prerequisites :

    (a) Basic homological algebra.
    (b) Descent theory for elliptic curves (definitions and basic properties of Selmer groups).
    (c) Duality theorems for Galois cohomology over local and global fields (Tate, Poitou).

    References :

    The course of Oesterlé and the standard texts on the subject (Silverman : The arithmetic of elliptic curves ; Serre : Cohomologie galoisienne; Neukirch, Schmidt, Wingberg : Cohomology of number fields).

    Nekovár's home page

  • W. Stein    Constructing Shafarevich-Tate Groups Using Visibility

    I will discuss three situations in which congruences between modular forms have been used to construct subgroups of Shafarevich-Tate groups in situations where a direct computation would be very difficult. The first, due to Cremona, Mazur, Agashe, and myself, gives new systematic evidence for the Birch and Swinnerton-Dyer conjecture for certain rank 0 quotients of the modular Jacobian J_0(N). The second gives the first examples, for each odd p < 20000, of abelian varieties A such that the p-part of Sha(A) is not a perfect square. The third, due to Dummigan, Watkins, and myself, provides examples and evidence for the Bloch and Kato conjecture for motives attached to modular forms. I will assume the audience members are familiar with abelian varieties, know the definition of Shafarevich-Tate groups and have some experience with modular forms, but I will not assume prior exposure to visibility theory or modular motives.

  • E. Urban     Sur les déformations p-adiques des formes de Saito-Kurokawa

    3 exposés

    Etant donne une forme modulaire f de poids 2k de niveau N et caractère trivial. Sa fonction zeta satisfait une équation fonctionnelle du type L(f,s) = epsilon(f,s) L(f,2k-s). Soit T_f la représentation galoisienne associée à f par Deligne.

    Le résultat suivant est le fruit d'une collaboration avec C. Skinner :

    Théorème (S-U) : Supposons que epsilon(f,k) = -1 (i.e. L(f,s) s'annule en s=k avec un ordre impair), alors le groupe de Selmer associé à T_f(k) est infini.

    Un exposé sera consacré la construction de déformations p-adiques de formes modulaires de Siegel p-adiques semi-ordinaires et des représentations galoisiennes correspondantes. Dans l'autre exposé, j'expliquerai comment l'étude des déformations p-adiques des formes de Saito-Kurokawa permet de construire certaines extensions du type :

    0 ----> T_f ----> E ----> Q_p(-k) ----> 0

    et de montrer le théorème ci-dessus.

    Bibliographie :

    M. Kisin : Overconvergent modular forms and the Fontaine-Mazur conjecture, preprint.
    G. Laumon : Fonctions zeta des variétés de Siegel de dimension 3, preprint.
    J. Tilouine, E. Urban : Several variable p-adic families of Siegel-Hilbert cusp eigensystems and their Galois representations, Ann. Sci. E.N.S., 4 srie, t. 32, p. 499-574, 1999.
    E. Urban : Sur les représentations p-adiques associées aux représentations cuspidales de (GSp_4)_Q, preprint.
    R. Weissauer : Four dimensional Galois representations, preprint.
    J.-L. Waldspurger : Correspondances de Shimura et quaternions, Forum Math. 3, p. 219-307, 1991.

  • S. Zhang    Gross-Zagier formula for Shimura curves

    3 lectures

    1. Statement of the formulas
    2. Rankin-Selberg convolution of L-series
    3. Height pairings on a Shimura curve

    Bibliography :

    B. Gross and D. Zagier : Heegner points and derivatives of L-series, Invent. Math 84, (1986), 225-320
    B. Gross : Heegner points on X_0(N), in Modular forms (Durham, 1983) 87-105, Ellis-Hoewood, Chichester (1984)
    B. Mazur : Modular curves and Arithmetic, ICM, Warsaw (1983) 185-211
    S. Zhang : Heights of Heegner points on Shimura curves, Annals of Mathematics, 153 (2001) 27-147
    S. Zhang : Gross-Zagier formula for GL_2, Asian J. Math., 5 (2001) 183-290
    H. Jacquet and R. Langlands : Automorphic forms on GL_2, Lect. Notes in Math., 114, Springer-Verlag (1972)
    H. Jacquet : Automorphic forms on GL_2 II, Lect. Notes in Math. 289, Springer-Verlag (1972)
    P. Deligne : Travaux de Shimura, Seminaire Bourbaki, in Lect. Notes Math. 244 Springer-Verlag (1972), 123-165
    H. Carayol : Sur la mauvaise reduction des courbes de Shimura, Comp. Math 59 (1986) 151-618